Nexys 3 Tetris

By Robert Fotino and Vu Le, 2015
University of California, Los Angeles
Computer Science M152A

Introduction

For our final project, we are doing a basic implementation of the classic video game, Tetris. The
game board is a 10x22 grid displayed using the VGA output of the Nexys 3. Game pieces,
called “tetrominoes”, are the seven unique arrangements of four connected squares, shown in
Figure 1 below.

disrrw.

L 0 5 T i

Figure 1. The seven game pieces, called tetrominoes, and the letters commonly used to
describe their shapes.

When the board is in its initial state, the board is blank and it waits for the reset switch to begin.
The reset switch is on the far left on the Nexys 3. The pause switch is on the far right, so that
the user doesn’t reset the game when they mean to pause it. When the game begins, a random
tetromino is chosen as the first piece, and it falls from the top of the screen at a rate of 1 block
per second. The user can use the left and right buttons on the Nexys 3 to move the piece left
and right. They can also rotate the piece clockwise with the top button. Pressing the down
button will move the piece down by one without waiting for the clock, while pressing the middle
button will immediately drop the piece down as far as it can go. Once the current piece reaches
the bottom of the board or it runs into other fallen pieces, it stays in its current position while a
new piece is randomly chosen to appear at the top of the screen for the user to control. When a
row of 10 blocks is filled completely filled up by pieces of fallen tetrominoes, that row disappears
and the (incomplete) rows above it are shifted down by one. For each row that the user
completes, their score increases by one. The score is shown on the seven segment display of
the Nexys 3. The game ends when either the user hits the reset switch or the blocks get all the
way to the top of the screen. When this happens, the final score and arrangement of fallen
blocks are preserved until the user hits the reset switch to start a new game.

The declaration of the top level tetris module is shown in Figure 2 below:

module tetris (

input wire clk_too fast,
input wire btn_drop,
input wire btn_rotate,
input wire btn_left,
input wire btn_right,
input wire btn_down,
input wire sw_pause,

input wire sw _rst,

output wire [7:0] rgb,

output wire hsync,

output wire vsync,

output wire [7:0] seg,

output wire [3:0] an
)s

Figure 2. The top inputs and outputs for the top level tetris module, in the file tetris.v.

The inputs are the master clock (called clk_too_fast) and the asynchronous signals of the 5
buttons and 2 switches. The 100 MHz master clock is reduced by 4 times to meet the timing
constraints, and this 25 MHz signal is called clk internal to the module. The outputs are the 8-bit
rgb value for the color of the block, the horizontal and vertical sync values hsync and vsync for
the display, the 8-bit seg for the 7-segment display of the score, and the 4-bit an value that
represents which digit is displayed on the board.

Design and Implementation

The top level tetris module, located in the file tetris.v, contains most of the game logic. It must
first slow down the 100 MHz master clock to a speed of 25 MHz, in order to meet its timing
constraints. When we synthesize our final design, the maximum clock frequency that will meet
all of the timing constraints is ~44 MHz, and the frequency of the VGA controller’s clock must be
at least 25 MHz. Therefore we can slow down the master clock signal, called clk too fast, by 4
using clock division so that the clk signal has a frequency of 25 MHz. We then use the clk signal
as the master clock throughout the rest of our design and the timing requirements are all met.

Next, there is a submodule called randomizer_, located in the file randomizer.v. It takes in just
the clk signal and outputs a signal called random that changes once every clock cycle. This
random signal is used as the value of the next tetromino to be chosen, when we need a random
new piece at the top of the screen. In the board’s initial state, it waits for the user to flip the reset
switch, which starts the game by choosing a random block to start falling down the screen. This
effectively “seeds” the randomizer, as the user input could come at any time, and we don’t know
what the value of the randomizer output will be at that time. Further randomness is introduced
because the amount of time between a block being on the screen and a new one being chosen
is variable based on user input. In this way we can get what appears to be a random
progression of tetrominoes.

The inputs with which the user controls the board are switches and buttons, both of which can
produce noisy signals that “bounce” up and down before arriving at a steady state. We want
each button press or switch movement to produce exactly one “enabled” signal when it it goes
to the 1 position, and then a “disabled” signal when it goes to the 0 position. For this we use a
debouncer module (located in debouncer.v) that takes in the clk signal and a signal called raw,
which is the asynchronous bouncy input, and outputs signals enabled and disabled. Internally
the debouncer uses clock division to get a 200 Hz signal. When this 200 Hz signal goes high,

the asynchronous input is sampled and stored in a debounced register. Once every clk cycle,
the value of debounced is stored in a debounced_prev register. When debounced is high and
debounced_prev is low, the enabled signal goes high. When debounced is low and

debounced_prev is high, the disabled signal goes high. The disabled signal is used for switches,
while the enabled signal is used for both buttons and switches.

The top level tetris module has a number of registers that are used to store the game state. The
most important of these is the mode, a state diagram of which is shown in Figure 3 below. Other
game state registers include the cur_piece, which indicates the type of piece the current falling
tetromino is (or 0 if it is empty). There are also the cur_pos_x and cur_pos_y registers, which
indicate the x and y coordinates of the top-left corner of the current tetromino. Additionally there
is the 2-bit cur_rot register which stores the rotation of the current block (0 for O degrees, 1 for
90 degrees, etc). A 220-bit vector called fallen_pieces stores a bit for each position in the 10x22
game board, 1 if there is a fallen block in that position or 0 if it is clear. The fallen_pieces vector
is used to test for intersection with the current piece, to test whether any lines are complete, and
to add the current piece when it hits the bottom of the screen or a fallen block. The fallen_pieces

vector along with the state of the current piece are used by the VGA display controller to output
the game board. This is described in the “VGA Display Controller” section.

rDau.s e ~Sw

Figure 3. State diagram for the finite state machine described by the mode register. When
blocks are actively falling down the screen, the game is in the MODE_PLAY state. When the
user has hit the pause switch, the game is in the MODE_PAUSE state. When the game is
waiting for the user to hit the reset switch so that it can clear the board and begin the game, it is
in the MODE_IDLE state. The MODE_DROP and MODE_SHIFT states will be explained
shortly.

When the game is in MODE_PLAY, the current tetromino falls at a rate of 1 Hz. This is
accomplished with clock division in a game_clock module, found in the file game_clock.v. A
counter counts to 25,000,000 (because the game_clock’s input clock is 25 MHz) and then the
game clock output goes high. When a new piece needs to be chosen, the game_clk_rst signal
is set high for one clock cycle, and the game clock counter goes back to zero, so that there is a
full second in between the new block appearing at the top and falling to the bottom. Additionally,
when the game is not in MODE_PLAY, the counter does not count at all. This allows for pausing
in between seconds and not counting time spent in MODE_DROP or MODE_SHIFT.

Since Verilog does not allow passing two-dimensional bit vectors between modules, the
fallen_pieces vector must be one-dimensional, and we have to do some math to find the right
index based on x and y coordinates (the index is y*width + x). We use this to our advantage by
having a single bit vector for the block position in one dimension so that we can index it from a
flat vector like fallen_pieces without additional calculation. We implemented a module
calc_cur_blk in the file calc_cur_blk.v that takes in a type of piece, an x and y position, and a
rotation, and it gives four one-dimensional block position vectors as well as the width and height
that the piece with the given parameters occupies. It does this with a series of case statements,
and specific calculations depending on the geometry of each block type. We use four block
positions of the current piece to add to fallen_pieces when the piece hits the bottom of the
screen or another block. We reuse the calc_cur_blk module in testing for collision, described
below.

When the user wants to move the current piece left, right, or down, or they want to rotate it,
there is a chance that the piece will either go offscreen or it will intersect with a block in
fallen_pieces. This is known as a “collision”, and we’d like to be able to test for it before actually
moving or rotating the piece. To test for this, we send the button signals through a module
called calc _test pos_rot, located in the file calc_test pos rot.v. This module takes in the current
x and y position, the rotation, and which button is pressed, and it uses these to determine a
hypothetical next x position, y position, and rotation. For example, if the user was pressing the
left button, calc_test pos_rot would output cur_pos_x -1, cur_pos_y, and cur_rot. The top level
tetris module uses these outputs to feed into another instance of calc_cur _blk called
calc_test_blk. We can then test whether the new position and rotation would intersect with any
of fallen_pieces or whether it would go offscreen, and if so we don’t move it to the new
position/rotation. If we were attempting to move the block down, and there is no more space
below it, we add the current piece’s 4 block positions to fallen_pieces and choose a new piece
at the top of the screen.

When the user hits the middle button, the current piece should appear to drop instantly to the
bottom. To accomplish this, when the middle button is pressed the game goes into
MODE_DROP. When the game is in MODE_DRORP, it always moves the piece down one, once
per 25 MHz clock cycle. When the piece cannot be moved down anymore because it would
intersect with a fallen_pieces or go offscreen, a new block is chosen and the game goes back to
MODE_PLAY.

When the user fills up a row in fallen_pieces, the game should increment the score by one and
the filled row should be removed by shifting the fallen blocks above it down by one row each. In
order to accomplish this, we have a complete_row module, located in the file complete_row.v.
This module takes in clk and fallen_pieces, and it outputs remove_row_y, the y-position of the
row it is examining, and remove_row_en, which is 1 when the row is filled and 0 otherwise. The
module cycles through the rows of fallen_pieces with the 25 MHz clock, and when it finds a row
that is filled and signals remove _row_en, the top level tetris module sets a register shifting_row
equal to remove_row_y, increments the score, and goes into MODE_SHIFT. In MODE_SHIFT,
on each 25 MHz clock cycle the row above remove _row_y is shifted down one row in
fallen_pieces and remove_row_y is decremented. When remove_row_y is 0, zeroes are set to
the top row and the game goes back to MODE_PLAY. With this system, multiple filled rows will
take several scan and shift cycles to remove, but to the user it will seem instantaneous.

The game ends when the current block positions intersect with any of fallen_pieces. This means
that the piece has spawned at the top of the board, but there isn’t enough room. When this
happens the game_over signal goes high, the current piece is added to fallen_pieces, and the
game goes into MODE_IDLE to wait for the reset switch to start again. The score and the game
aftermath in fallen_pieces are preserved visually until the user starts a new game.

Seven Segment Display Controller

The seven segment display on the Nexys 3 board shows the user what their current score is.
The score starts out at zero, and increases by one for every completed row. Getting more than
one row at a time does not give any sort of score multiplier. The top level tetris module handles
the calculation of the score and feeds it to a module called seg display, located in the file
seg_display.v. The four digits of the score are passed separately, to ease the calculation burden
of the seg_display module. The seg display also takes in the 25 MHz clk as input, and outputs
an 8-bit seg signal that contains the segment pattern to be displayed and a 4-bit an signal that
contains which digits on which to display the segment pattern.

Since we only have one 8-bit seg signal, we must multiplex the digits and output one at a time,
masking the others with the an signal. We use clock division to get a 500 Hz seg_clk, and every
time seg_clk goes high we cycle forward the 2-bit digit register, which determines which digit we
are outputting. Since we cycle through the four digits on the seven segment display at a speed
of 500 Hz, much faster than the human eye can detect, to the user it looks like all four digits are
being displayed at once. Since there are only four digits, the maximum score that a user can get
is 9999. If they complete more rows after 9999, their score will not change.

VGA Display Controller

The VGA output on the Nexys 3 board is used to display the tetris game on the screen. The
module for the VGA controller is in the file vga_display.v. The output resolution we use is
640x480 pixels. There is a black background, with the game board centered on the screen. The
game board has a 1 pixel white border and a gray background. Fallen blocks are displayed as
white, while the current movable piece is displayed in color.

The VGA signal is analog, and it does not have any way to exchange resolution information with
the monitor. Furthermore, the monitor has no persistent storage, so it can only display the pixels
one by one as they are received from the board. The monitor detects the resolution through the
timing of the hsync and vsync signals, which stand for horizontal sync and vertical sync,
respectively. There is also an 8-bit rgb signal, which is for the current color being output to the
screen; two bits for blue, three for red, and three for green. The timing of these signals to
produce an image on the VGA display is discussed below.

For a 640x480 resolution, the monitor expects the frequency of the clock to be ~25.17 MHz. Our
25 MHz clock signal is close enough for the job. We have counter_x and counter_y signals that
keep track of the current position we are showing on the screen. For each horizontal line, there
is a 640-cycle period of displaying actual pixel data on the screen by changing the value of rgb
appropriately based on the size of the board, the value of fallen_pieces, and the current piece’s
state. After each line’s pixel data there is a 16-cycle period waiting known as the “front porch”
that precludes the hsync signal. Then the hsync signal goes low for a 96-cycle period, which
tells the monitor that it needs to start displaying the new line soon. After the hsync signal goes
back to high and there is a waiting period of 48 cycles known as the “back porch” before the
next horizontal line’s rgb data starts being output. The vertical sync operates in a similar way.
For 480 lines, the vsync stays high and pixel data gets output. Then there is a front porch of 10
lines, followed by vsync going low for 2 lines. This tells the monitor that it needs to start
displaying at the top of the screen soon. After a back porch of 33 lines, the next video frame
starts getting output at the top left corner of the screen.

Simulation

Since the tetris game makes use of the VGA controller, it is difficult to just use the simulator and
understand what is happening with the circuit. Most of our testing efforts involved synthesizing
the design and putting it on the Nexys 3 board directly, so that we could make use of what we
see on the VGA output for debugging. However, we encountered some difficulties in initially
getting the VGA controller to work, and we were able to use the simulator to good effect in
resolving our issues.

In order to test our VGA controller in the simulator, we turn the resolution way down to 8 pixels
wide by 6 pixels high. The front porch for the horizontal sync is lowered to one cycle, the pulse
width of the hsync signal is lowered to two cycles, and the back porch is lowered to one cycle.

The front porch for the vertical sync is lowered to 2 lines, the pulse width of vsync is lowered to

one line, and the back porch is lowered to 3 lines. This allows us to more easily see what is
going on in the simulator, because there aren’t such large gaps between hsync and vsync signal
changes.

The code for the test bench is shown in Figure 4 below, and the simulation output is shown in
Figure 5. The test bench instantiates a vga_display module and gives it just the clk as input, and
gets just the vsync and hsync pulses as output. After 311 cycles (the time to complete the first
video frame), the test bench finishes.

module tb();

reg clk;
wire hsync;
wire vsync;

initial begin
clk = 9;
end

vga_display vga display_ (
.clk(clk),
.hsync(hsync),
.vsync(vsync)

)5

always #1 clk <= ~clk;
always #311 $finish;

endmodule
Figure 4. The code for the VGA controller test bench. The clock is artificially created by making

a behavioral clk signal that switches on and off after a waiting period of one cycle. We call
$finish after 311 cycles so that that we get exactly as much output as we want.

Figure 5. The waveform output for the simulation of the VGA controller. The top image shows
the first 25 cycles, which is up until the end of the first horizontal line. The bottom image shows
all 311 cycles, which is the entire first video frame. In the top image, counter_x goes from 0 to 7
and the rgb signal should be busy outputting pixels. Then when counter_x is 8, this is the front
porch for hsync. When counter x is 9 and 10, this is the hsync pulse. After, there is another lull
for the back porch before the next line starts. A similar scenario occurs in the bottom image with
the relationship between the vsync and counter_y signals.

We were able to use these waveforms to determine that our code was outputting the hsync and
vsync timing signals correctly. After this simulation, we changed the resolution and pulse widths
back to what they were before, in “definitions.vh”. Using a header file for all of our defined
values made it easier to change the code, without searching for a bunch of magic numbers.

Conclusion

In conclusion, we were able to implement a simple tetris game in hardware on the Spartan 6
FPGA used by the Nexys 3 board. The 100 MHz master clock was too fast to meet timing
constraints, so we used a clock signal of 25 MHz as main clock. The randomizer module cycles
through types of pieces so that we can sample an effectively random piece for the new
tetromino on user input. The debouncer module is used to reduce the noise in input signals from
the buttons and switches. In the top level tetris module, we use registers to store the game
modes at each given time and the game does a different function on each clock cycle
depending on the current mode.

The entire game board is represented by a 220-bit vector called fallen_pieces. Each bit is set to
1 if there is a block at the bit’s position, and set to 0 otherwise. Each row in the fallen_pieces is
checked on each 25MHz clock cycle. If a complete row is found, it will be removed from the
game, and the above rows will be shifted down by one on each clock cycle. The tetris module
uses registers to enable the MODE_SHIFT as well as to store the number of rows to be shifted
down. When a new piece is created and intersects with any positive bits of the fallen_pieces, it
signals that the game is over because there is not enough room.

The score is calculated in the top level tetris module and passed to seg_display module that
handles the display of numbers on the 7-segment display. The vga_display module is used to
display the game on the screen.

Difficulties Encountered

We encountered several difficulties while implementing the tetris game. At first, we tried to do
too many layers of combinational logic in each clock cycle, so the amount of resources needed
to synthesize the code grew to be too big for the board. We made the decision to sacrifice color
in the fallen pieces, so that fallen tetrominos are just white and use one bit as opposed to three.
We were using three bits per block to represent the 7 block colors plus 1 empty color. This
resulted in a 10 blocks wide * 22 blocks high * 3 bits per block = 660 bit vector for fallen_pieces.
Since there were many operations that indexed this huge bit vector in parallel, the board
couldn’t support the vast array of logic components required. What we could have done instead
is changed the design to use a block RAM on the Nexys 3 board. It is possible to have an up to
9 Kb true dual port RAM using specialized RAM slices on the board, for no additional cost.
However, this would have required changing the design quite a bit as a dual port RAM only
allows a read/write operation on each port once per clock cycle, and our design used massively
parallel access.

Another way we reduced the amount of slices needed on the board was by using sequential
logic for MODE_DROP and MODE_SHIFT. We first tried to calculate the exact spot to drop the
current tetromino all in one clock cycle, so that we could implement the middle button’s
functionality more easily. However, this required a lot of arbitrary parallel access to the
fallen_pieces array; more than the board could support, with logic still needed to implement
other components. After discovering this we introduced the mode register so that we could
operate more like a finite state machine and do things sequentially instead of combinationally.

The final difficulty we encountered was that we didn’t meet the timing requirements of the board.
The maximum path required a maximum clock speed of ~44 MHz to meet timing requirements,
and we were operating with the Nexys 3 master clock of 100 MHz. The result was that the code
would synthesize, and BITGEN would even run successfully so that we could program the
board. However, while running the game, we ran into certain “artifacts”, where random errors
would occur that the logic should not have allowed. We believe that this was the result of
occasional hold time violations. To fix this, we reduce the master clock down to 25 MHz,
because that’s all we need. Our fastest clock requirement is for the VGA controller, which must
conveniently be 25 MHz.

